Najjednostavnija logička operacija u računalnoj znanosti

Svatko tko počinje studirati računalnu znanost poučava sebinarni sustav kalkulacije. Koristi se za izračunavanje logičkih operacija. Razmotrimo ispod svih najosnovnijih logičkih operacija u računalnoj znanosti. Uostalom, ako mislite o tome, oni se koriste pri stvaranju logike računala i uređaja.

poricanje

Prije nego počnemo detaljno razmotriti konkretne primjere, navodimo glavne logičke operacije u računalnoj znanosti:

logičke operacije u računalnoj znanosti

  • uskraćivanje;
  • dodavanje;
  • množenje;
  • slijediti;
  • jednakost.

Također, prije nego što počnemo proučavati logičke operacije, vrijedno je reći da je u računalnoj znanosti laž određeno "0", a istina je "1".

Za svaku akciju, kao u običnoj matematici, koriste se sljedeći znakovi logičke operacije u informatici: ¬, v, &, ->.

Svaka akcija može se opisati bilo 1/0 znamenki, ili jednostavno logičkim izrazima. Počnimo s matematičkom logikom jednostavnom operacijom koja koristi samo jednu varijablu.

Logička negacija je inverzna operacija. Dno crta je da ako je izvorni izraz istinit, onda je rezultat inverzije lažan. Isto tako, ako je izvorni izraz lažan, rezultat inverzije će biti istinit.

Prilikom pisanja ovog izraza upotrijebljen je sljedeći znak: "¬ A".

Evo tablice istine - dijagram koji prikazuje sve moguće rezultate operacije za bilo koji ulazni podatak.

Tablica istine za inverziju
Ah.xoko
¬okox

Ako imamo originalni izraz je istina (1), a zatim njegova negacija jeFALSE (0). I ako je originalni izraz false (0), onda njegova negacija je istina (1).

dodatak

Preostalih operacija zahtijeva dvije varijable. Označuju jedan izraz-

Računanje svojstva Booleova operacija
A, drugi - V. Logičke operacije u računalnoj znanosti, koje označavaju akciju zbrajanja (ili disjunkcije), kada su napisane, označene su riječju "ili" ili znakom "v". Zapišite moguće varijante podataka i rezultate izračuna.

  1. E = 1, n = 1, tada je (e) (v) n = 1. ako oba izraza su istinite, onda njihova Disjunkcija je također istina.
  2. E = 0, n = 1, kao rezultat toga, e v h = 1. E = 1, n = 0, tada je (e) (v) n = 1.Ako barem jedan od izraza je istina, onda će dodatak rezultatihIstinu.
  3. E = 0, h = 0, rezultat v = 0. ako oba izraza su lažne, onda njihov zbroj je također laž.

Zbog kratkoće, neka je stvoriti tablicu istine.

Disjunkcija
Exxokooko
Hxokoxoko
E v hxxxoko

množenje

Nakon rješavanja operacije dodavanja, idite namnoženje (konjunkcija). Koristimo isti zapis, koji je dan gore za dodatak. Prilikom pisanja logično množenje označeno je s "&" ili slovom "I".

  1. E = 1, n = 1, tada je (e) h = 1 &. ako oba izraza su istina, a onda zajedno-istinu.
  2. Ako barem jedan izraz neistinit, onda je logičan rezultat će takođerlaž.
  • E = 1, n = 0, pa (e) h = 0 &.
  • E = 0, n = 1, tada je (e) h = 0 &.
  • E = 0, h = 0, h = 0 i e.
Zajedno
Exx00
Hx0x0
(E) I Nx000

rezultat

Logički duga (implikacija) je jedan od najjednostavnijih u matematička logika.Temelji se na jedan aksiom iz istine može neslijede laži.

  1. E = 1, n =, pa e-> h = 1. ako par u ljubavi, oni moguPoljubac istinu.
  2. E = 0, n = 1, tada je e-> h = 1. ako par u ljubavi, oni moguljubljenje je također nije istina.
  3. E = 0, h = 0, ova e-> h = 1. ako par u ljubavi, onda su poljubac i istina.
  4. E = 1, n = 0, rezultat će biti-> n = 0. ako par u ljubavi, onda se ne ljube se laž.

Za olakšavanje matematičkih operacija daje istina tablicu.

Implikacija
Exxokooko
Hxokox0
E-> Nxokoxx

jednakost

Posljednji pregledao stanetlogicheskoe identične operacije jednakost ili ekvivalencije u tekstu možeoznačen kao "... Onda i samo onda, kada... "na temelju ovog jezika, napisati primjere za sve mogućnosti izvora.

osnovne logičke operacije u računarstvu

  1. A = 1, b = 1, tada ≡ b = 1. chelovek pjottabletki ako i samo ako je bolestan.(true)
  2. A = 0, b = 0, i na kraju = ≡ 1. ljudi ne pijutabletu onda i samo onda kada nije bolesna. (true)
  3. A = 1, b = 0, pa ≡ b = 0. pjottabletki čovjek onda i samo onda kada nije bolesna.(false)
  4. A = 0, b = 1, tada ≡ b = 0. čovjek se ne pjottabletki ako i samo ako je bolestan.(false)
Ekvivalencija
Ah.xokoxoko
Uxoko0x
(A) ≡ uxxokooko

nekretnine

Dakle, nakon razmatranja najjednostavnijih logičkih operacija uračunalne znanosti, možemo početi proučavati neka od njihovih svojstava. Kao iu matematici, logičke operacije imaju vlastiti redoslijed obrade. U velikim logičkim izrazima prvo se izvode operacije u zagradama. Nakon njih, prije svega, izračunamo sve negativne vrijednosti u primjeru. Sljedeći korak je izračunati konjunkciju, a zatim disjunkciju. Tek nakon toga provodimo operaciju istraživanja i, konačno, ekvivalentnost. Razmotrite mali primjer za jasnoću.

I (v) i u-> u ≡ a

Slijedeći redoslijed izvođenja.

  1. U
  2. U I (¬)
  3. I v (End (¬))
  4. (I v (End (¬)))-> u
  5. ((Je v (End (¬)))->) ≡ a

Kako bi riješio s jetotprimer, moramo graditi tablicu proširena istina.Na njegovo stvaranje, sjećam se da je bolje imati stupac u istom redu i da ćepokretanje akcije.

Primjer rješenja
Ah.U

U

U I (¬)

I v (End (¬))

(I v (End (¬)))-> u

((Je v (End (¬)))->) ≡ a

xokoxokoxxx
xxokookoxxx
okookoxokookoxoko
okoxokookookoxoko

Kao što vidimo, rezultat je odluka stanetposlednij primjer stupac. tablica istine pomogao riješiti problem od svaki mogući izvor podataka.

znakovi logičke operacije u računarstvu

zaključak

U ovom članku, te naučili o nekim pojmova logike, kao što su informatika, svojstva, kao i logičke operacije, što je logično operacije po sebi.Bili su primjeri elementarne logike i istine tablice pojednostaviti ovaj proces.

</ p>
volio:
0
Vezani članci
Logičke baze računala
Kako napisati tablicu istine za
Algoritam izgradnje tablice istine
Jedinica aritmetičke logike (ALU) - to
Što su algoritmi i zašto su im potrebni?
Vrste podataka
Gdje mogu naći najjednostavnije obrasce križanja?
Logička logika - uspjeh djeteta u
Logičke zadatke. Logičke zadatke za
Popularni postovi
gore